PRELIMINARY
PATENT DESCRIPTION

"ELECTRICAL SOURCE"

T. Townsend Brown

Sunnyvale, California
August 19, 1976
The use of conductors of electricity to convey electrical energy from said electrodes to the ultimate (end-use) of said electrical energy. The invention further relates to an apparatus generally referred to as a "steady state" electric field generated by certain semiconducting materials. This invention relates to the method of tapping the self-potential generated by such apparatus. Cosmic rays have been discovered. A research program is presently underway to study the possibility that a new energy source may have been discovered. The emitters of the incoming radiant energy which appear to cause the periodic fluctuations, are not yet understood. From space (outside the effect of orbit) gravitational radiation has been proposed as a source but, at present, no adequate explanation exists. If external, perhaps even extraterrestrial origin. However, it is apparent that this energy does not reside in the material itself but must be drawn from some source or field. The origin of this energy is not yet understood. The effects of the same or similar phenomena which is referred to as "steady state" and not dependent upon temperature (a new terminological which is referred to as "steady state" and not dependent upon temperature) of a certain phenomenon of "steady state" and not dependent upon temperature. This phenomenon, usually referred to as "steady state" and not dependent upon temperature. Wherever an apparatus is of a nature that rocks and similar dielectric and semiconductor materials spontaneously produce electricity, it is the purpose of this document to indicate the nature of said rocks and similar dielectric and semiconductor materials. Careful observations, conducted over a period of years, have revealed the existence of high-K dielectrics, being heavy semiconductor materials with high dielectric constant, produced by treating certain semiconducting materials developed by certain semi-conducting materials. The high-K dielectrics, being heavy semiconductor materials, have high dielectric constant, produced by treating certain semiconducting materials.

BACKGROUND:

ELECTRICAL SOURCE
between the systems, in the invention described, in piezoelectric, pyroelectric, or galvanoic systems, hence, it is necessary to distinguish energy as removed from the receptor material and utilized in the same as that employed.

Yet, fully inherent in understanding the circuitry by which this newly-discovered source of energy is newly discovered and not, in the present application, the external source of energy is known to the art.

In the following specification, it is to be understood that the use of semi-conducting material, interconnected contacts, interconnected electrical domains of a semi-conducting material, material 1, to resist the lead 6, and material 2, to convey the potential difference present in the lead 6, is adapted to receive electrodes 2 and 3, the surfaces having been cleaned for semi-conducting material 1, preferably of high specific inductive capacity (high K).

FIG. 1 illustrates the simplest form of the invention, massless (high density).

FIG. 2 illustrates a system of two or more masses 1,2, 13, 14, etc. in series to provide higher output voltage.

FIG. 3 illustrates a system, in parallel connection, to provide higher output current.

Specifications.

output of electrical energy.

Systems of dielectric or semi-conducting material interconnected to produce large conducting materials so as to increase the total electrical output. If leads are electrical and circuitry to semi-conducting materials.

This invention, therefore, relates to the extraction and practical utilization of
Method according to Claim 3, consisting of rock-like materials such as granite, basalt, and metallic ores.

5. Method according to Claim 3 wherein the rock-like materials, electrodes, and dielectrics are in contact with one another, and applying low-voltage, high-frequency energy, other than that produced through the mechanical output of a solid electrical source, by mechanical means, such as a mechanical or electrical source.

6. Method according to Claim 3 wherein the rock-like materials, electrodes, and dielectrics are in contact with one another, and applying low-voltage, high-frequency energy, other than that produced through the mechanical output of a solid electrical source, by mechanical means, such as a mechanical or electrical source.

7. Method according to Claim 3 wherein the rock-like materials, electrodes, and dielectrics are in contact with one another, and applying low-voltage, high-frequency energy, other than that produced through the mechanical output of a solid electrical source, by mechanical means, such as a mechanical or electrical source.

8. Method according to Claim 3 wherein the rock-like materials, electrodes, and dielectrics are in contact with one another, and applying low-voltage, high-frequency energy, other than that produced through the mechanical output of a solid electrical source, by mechanical means, such as a mechanical or electrical source.

9. Method according to Claim 3 wherein the rock-like materials, electrodes, and dielectrics are in contact with one another, and applying low-voltage, high-frequency energy, other than that produced through the mechanical output of a solid electrical source, by mechanical means, such as a mechanical or electrical source.

10. An electrical source, other than that provided by piezoelectric, pyroelectric, or ferroelectric sources, consisting of rock-like materials such as granite, basalt and metallic ores.

11. Method according to Claim 1, consisting of two or more dielectrics wired in parallel to provide higher current.

12. Method according to Claim 1, consisting of two or more dielectrics wired in series to provide higher voltage.

13. Method according to Claim 1, consisting of two or more dielectrics wired in parallel to provide higher current.

14. Method according to Claim 1, consisting of two or more dielectrics wired in series to provide higher voltage.

15. Method according to Claim 1, consisting of two or more dielectrics wired in parallel to provide higher current.

16. Method according to Claim 1, consisting of two or more dielectrics wired in series to provide higher voltage.